19th Annual US Composting Council Conference Santa Clara, California (January 2011)

Recovering Renewable Energy and Compost from Post-Consumer Organic Materials

G.M. Savage and L.F. Diaz CalRecovery, Inc. Concord, California <u>GSavage@calrecovery.com</u>

Overview

- Feedstocks
- Processing alternatives (e.g., compost, biological, thermo-chemical)
- Issues
- Conclusions

Typical Solid Waste Management Infrastructure Designed to Achieve High Waste Diversion Rates

Residues from Clean and "Dirty" MRFs Offer Opportunities

CalRedovery

Potential Feedstocks for Energy Recovery and Compost

- Commercial sources:
 - source separated
 - mixed waste
- Residential sources:
 - source separated
 - mixed waste

Examples of Recovering Energy from Solid Wastes

Markets, Uses and Recovered Product Specifications

- Solids compost (soil amendment) (NPK, salt content, micronutrients, etc.)
- Gas:
 - biogas (CH₄, H₂S, CO₂, siloxanes, heating value, etc.)
 - pyrolysis gas (syngas) (CO, H, PAH, heating value, etc.)

Some Key Feedstock Factors

- Combustible or biodegradable organic content
- Moisture content
- Inert content
- Trace contaminants

Food and Yard

Plastics

General Process Design

- Waste composition
- Concentrate materials with desirable qualities:
 - biogas biodegradable organics, such as food materials; reject inerts
 - pyrolysis organics and low moisture content; reject inerts
- Maximize yield and purity of desirable materials from parent mixture

Pre-Processing Stages

• Dry:

- screening
- size reduction
- air/density
- Wet:
 - size reduction (pulping)
 - screening
 - hydraulic/density

CaleRedovery

Dry Size Reduction (high-speed hammermill)

Hammermill rotor~

CalRedovery

Wet Size Reduction (pulper)

CallRedovery

Principal Methods of Segregation

Physical (screening):

particle size, geometry

Gravitational (sink/float):

particle density

Aero- or hydro-dynamic (air/liquid classification):
 particle density, size, and geometry

– fluid viscosity and velocity

GaliRedovery

Component Particle Size Distributions

Screening and Air/Density Separation for Organic Recovery

2) Air/Density Separator

Effect of Selective Post-Processing MRF Residues for Organic Upgrading

Size Class (inches)	Percent (dry wt basis)	
	Biodegradable Organics	Inerts
-3	60	40
-2 + 0.5	80	20
-0.5 (fines)	40	60

Back-end Technologies

Tunnel Anaerobic Digesters

Composting Facility

Plasma Arc Gasification

Vertical Anaerobic Digesters

LNG Fueling Station

Some Issues

- Thermo-chemical (pyrolysis, etc.):
 - uses of char (requires more processing)
 - uses of pyrolytic oils and tars (requires more processing)
 - gas cleanup required for downstream uses
 - air emissions (from energy conversion system, e.g., enginegenerator)
- Anaerobic digestion:
 - process solids (dispose or requires further processing)
 - gas cleanup for downstream uses
 - air emissions (from energy conversion system, e.g., enginegenerator)

GallRedovery

Cost and Revenues

- Processing costs are sensitive to:
 - throughput rate
 - composition and contamination
 - "products" that have no viable markets
 - degree of environmental control
- Revenues are sensitive to:
 - yield and purity of products

Conclusions

- Key planning and design considerations:
 - feedstock characteristics and contamination level
 - markets and product specifications (compost feedstock, fuel)
 - required pre-processing, and processing rate
 - other factors (local regulations; available land; effect of source-separation programs)