# Mechanically Enhanced Biodrying of Biosolids Using the Agitated Bay Composting System

Lissa Ham Siemens Water Technologies Inc. Richard Nicoletti, PE Siemens Water Technologies Inc. Lewis Naylor, PhD Apple Environmental Services James Taylor Town of Merrimack, New Hampshire

19<sup>th</sup> Annual US Composting Council Conference and Tradeshow 24 – 27 January 2011 Santa Clara/San Jose, California



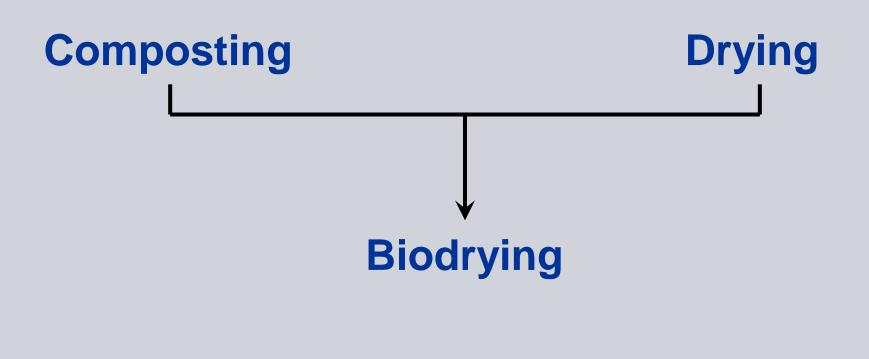
#### **Biosolids Management**

## Challenges

- Changes in biosolids management practices and industry
- Woody amendment now a commodity
- Energy cost increases for traditional drying
- Outdoor drying issues (China)



#### **Biosolids Management**


# Solution

- Controlled agitation and aeration
- Automated agitation
- Biodried biosolids recycled as amendment
- Enclosed facility avoids weather impact
- Biodrying saves energy compared to traditional drying
- IPS System has flexibility to biodry or compost





#### **Biosolids Management**



# **Technology** Comparison

#### **Biosolids Management**

# **Composting vs. Biodrying**

### Similarities

- Biological process
- Self generated heat
- Static/Mechanical
- ≥ 18 days
- Area depends on process

### Differences

- Cellulose Amendment vs.
  Dried Biosolids
- Moisture Control

# **Technology** Comparison

#### **Biosolids Management**

# Drying vs. Biodrying

### Similarities

- Stabilize /reduce moisture & volume
- Recycles dried biosolids
- Mechanical
- Produces fertilizer/fuel

### Differences

- Thermal vs biological process
- Supplied vs self-generated heat
- 24 hours  $vs \ge 18$  days
- Retains calorific value
- Space requirments differ

# **Technology Comparison**

#### **Mechanically Enhanced Biodrying**



**Biodrying**: Partially drying biological materials using self generated heat from microbial biochemical processes.

- Air drying as sun/humidity/ temperature impacts drying
- Subject to extreme weather
- Occasional manual turning
- Takes months to dry

#### **Mechanically Enhanced Biodrying**



**IPS Mechanically Enhanced Biodrying:** Incorporates mechanical processes such as forced aeration and pile agitation to further expedite moisture evaporation. Increases microbial activity Self-generated heat Automated process control and turning

- Fully enclosed
- Days to dry

#### **Mechanically Enhanced Biodrying**

#### • Mr. Richard Nicoletti, P.E.

Pilot Study Project Manager

#### Mr. Lewis Naylor, PhD

Personnel

Pilot Study Process Consultant and Evaluator

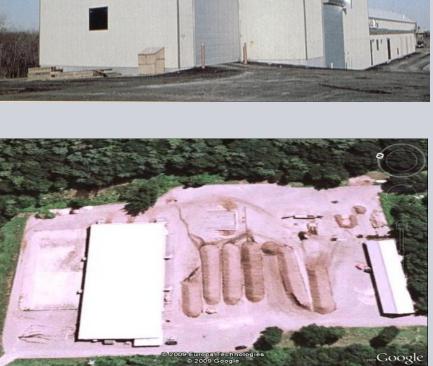


#### **Mechanically Enhanced Biodrying**

#### Anthony Dupont Compost Facility

Bristol, Rhode Island

**July - August 2008** Phase I Phase II


Summer Trial

Merrimack Composting Facility Merrimack, New Hampshire

> September 2009 – February 2010 Pre- Pilot Test Pilot Test

Winter Trial

Study Locations – Northeast USA







#### **Mechanically Enhanced Biodrying**

### **Study Goals**

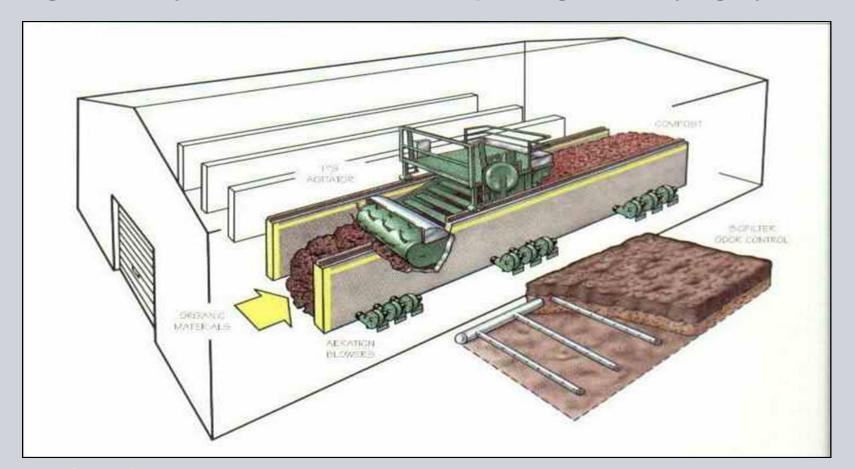
# Warm weather trials, June- August 2008, Bristol, RI

- Test use of dried biosolids as single amendment
- Determine biodrying potential/time requirements
- Determine pathogen destruction capability
- Mechanical and biological limits of the IPS Technology



#### **Mechanically Enhanced Biodrying**

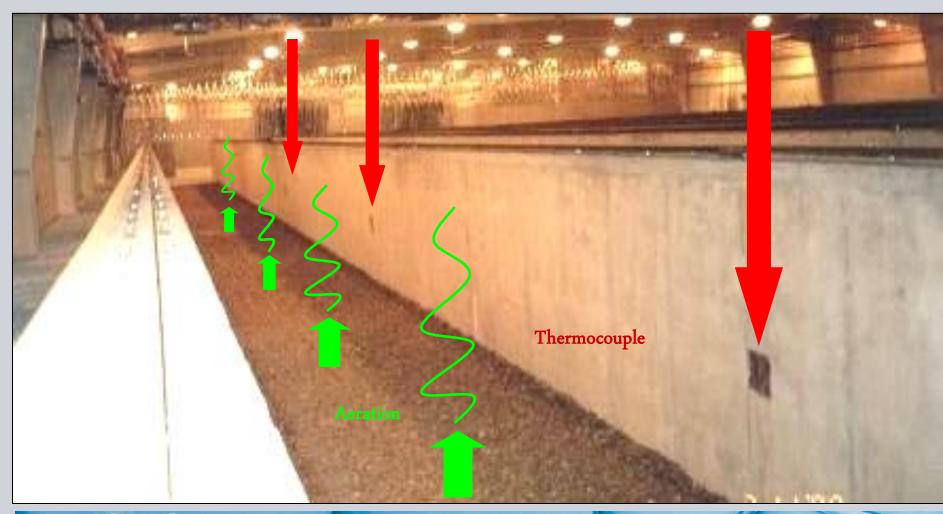
### **Study Goals**


# Cold Weather Trials, September 2009 – February 2010, Merrimack, NH

- Test ability to achieve 65% solids at ambient temperatures < 0°C</li>
- Assess production of adequate compost for recycle
- Confirm retention time in bay
- Evaluate pathogen destruction temperatures and PFRP temperatures
- Estimate heating value of product for fuel use
- Identify critical input/output parameters and boundary conditions



#### **IPS System Overview**


#### Agitated Bay, Forced Aeration Composting & Biodrying System



# IPS Composting & Biodrying




#### **IPS System Overview**



# **IPS Composting & Biodrying**

#### **IPS System Overview**



#### IPS Biodrying & Composting Process Animation

# IPS Composting & Biodrying



#### **IPS System Overview**



#### **Facility Description**

Facility Data

|                      | Bristol                                                  | Merrimack                                                                   |  |  |
|----------------------|----------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| Facility Age:        | 15 years                                                 | 15 years                                                                    |  |  |
| No. Bays:            | 4                                                        | 15                                                                          |  |  |
| Materials Processed: | Primary/Secondary<br>sludge with shredded<br>green waste | Undigested/Digested sludge<br>& septage w/ sawdust,<br>shredded green waste |  |  |
| Sludge ds:           | Avg. 25%                                                 | 10 – 25%                                                                    |  |  |
| Agitator Power:      | <b>30 HP</b><br>(recent replacement)                     | <b>25 HP</b><br>(original)                                                  |  |  |
| Ambient Temp.:       | 59°F to 100°F                                            | 8°F to 54°F                                                                 |  |  |
| Bay Dimensions:      | 220 ft long x 6 ft                                       | wide x 6 ft deep                                                            |  |  |
| Blower Qty./Power:   | 5/3                                                      |                                                                             |  |  |
| Distance/Agitation:  | 12 f                                                     | eet                                                                         |  |  |

#### **Bristol Pilot Study**

#### **Bristol Study**

Phase I: Drying was primary objective

- Drying as quickly as possible
- 22% ds sludge blended with dried biosolids pellets (>90%ds)
- Optimize agitation & aeration (a & a) to achieve ≥65% ds finished product

Phase II: Achieving PFRP was primary objective

- 22% ds sludge blended with Recycle (85% ds)
- Optimize a & a to achieve PFRP (3 days @ 55°C) & VAR (14 days @ 45C)
- Achieve a >65% solids finished product (secondary)





# Strategies

#### **Merrimack Study**

#### **Merrimack Study**

Pre-Pilot Test: Generate dried biosolids for Pilot Test

- 4 Passes run to create a carbon-free amendment for Pilot Test
- Sludge avg. @ 19% DS blended with sawdust @ 85%ds
- Optimize a & a to achieve ≥65% ds finished product
- Pilot Test: Achieve 65% ds dried biosolids from 45% ds Test Mix
  - 4 Passes run to test variables (agitation frequency/mix variation/aeration)
  - Optimize a & a to dry and achieve PFRP Temps.
  - Sludge solids declined due to seasonal variations
  - Mimic effect of longer bay length

Strategies





#### **Mechanically Enhanced Biodrying**

### RESULTS

#### **Bristol Study**

Phase I: Reached 65% ds after Day 9 & 88% ds after Day 24



Phase II: Achieved PFRP Temperatures, dried from 41% ds to 68% ds in 18 days



#### **Mechanically Enhanced Biodrying**

### RESULTS

#### **Merrimack Study**

Pre Pilot Test: Created carbon-free recycle for PT Reached 65% ds after Day 24



Pilot Test: Low solids content of sludge had a negative cascading effect on the ability to achieve the desired Test Mix and Recycle solids content Challenging results from trial defined the parameters required

to achieve 65% solids content:





#### **Mechanically Enhanced Biodrying**

### RESULTS



#### BOUNDARY CONDITIONS FOR BIOSOLIDS TO ACHIEVE BIODRYING

Sludge ≥ 20% DS, ≥ 60% VS Input Mix ≥ 45% DS

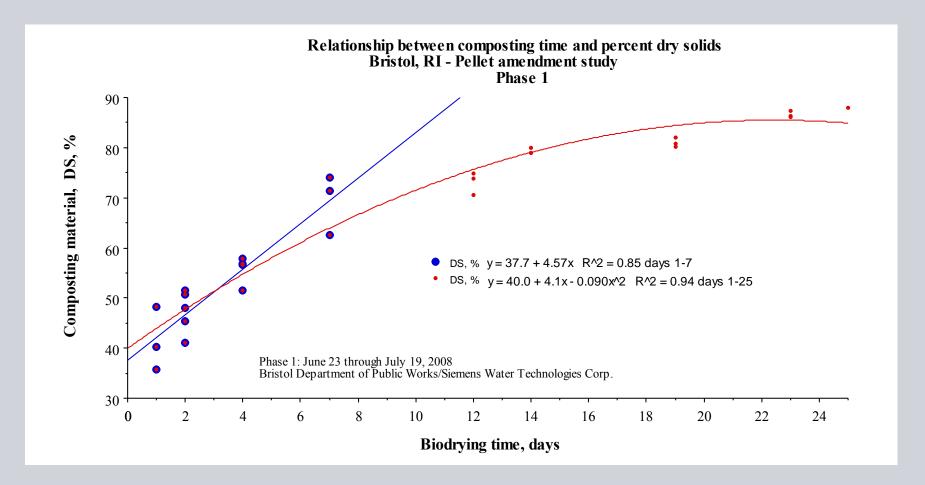




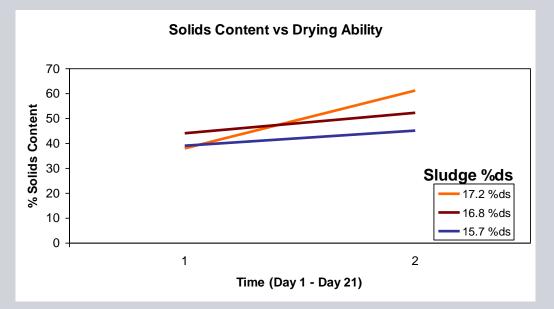
#### **Merrimack Pilot Study**

### **Summary of MEB Output Test Passes**

```
Passes P4, 1, 2, 3 and 4
```


Duration Pass P4 thru 4: Average sludge dry solids: Average recycle dry solids: Average input mix dry solids: Average output dry solids:

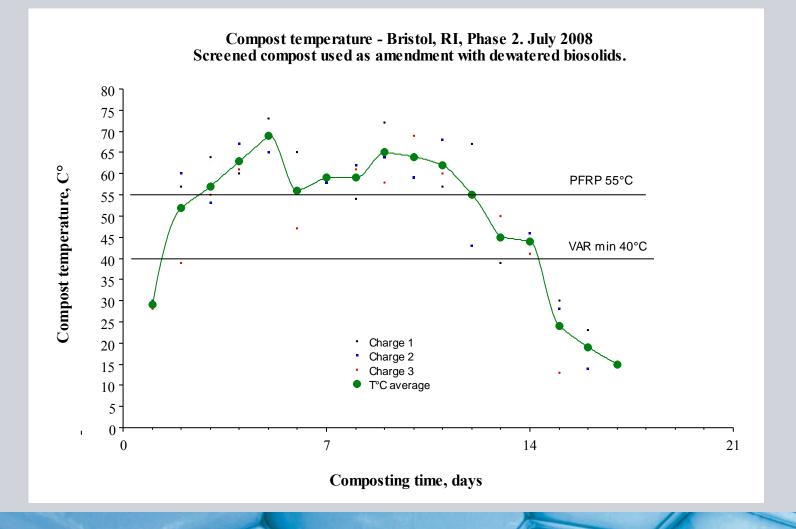
**Ambient Temperature:** 


3 Nov – 26 Feb *(85 days)* 20% to 16% 52% to 45% 42% to 37% 55% to 47%

8°F to 54°F

#### Solids Content vs Biodrying Time (Bristol)




#### **Solids/Energy Content vs Drying Ability**



#### Solids Content of Sludge & Recycle vs Drying Ability


|        |        |         |        |           | Solids   | Retention |
|--------|--------|---------|--------|-----------|----------|-----------|
| Charge | Sludge | Recycle | Infeed | Discharge | Increase | Time      |
| Date   | (% ds) | (% ds)  | (% ds) | (% ds)    | (% pts)  | (days)    |
| 21-Dec | 17.2   | 60      | 38     | 61        | 23       | 21        |
| 29-Dec | 16.8   | 50      | 44     | 52        | 8        | 21        |
| 5-Jan  | 15.7   | 48      | 39     | 45        | 6        | 21        |

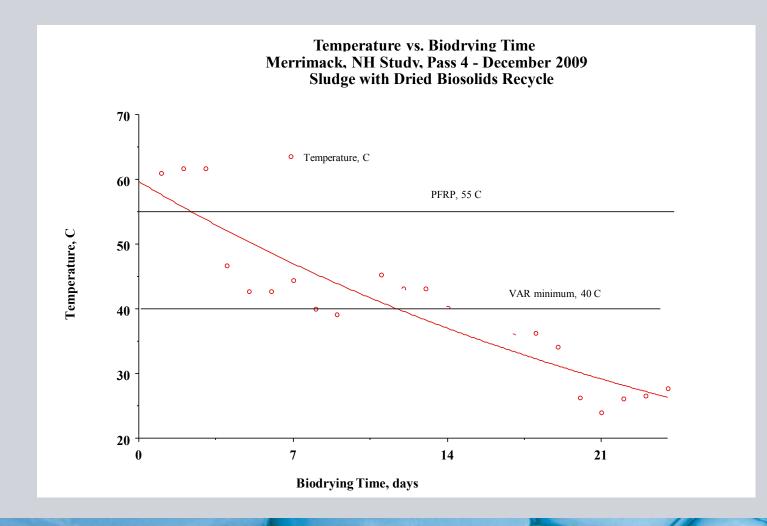
#### **Temperature vs. Time (Bristol)**



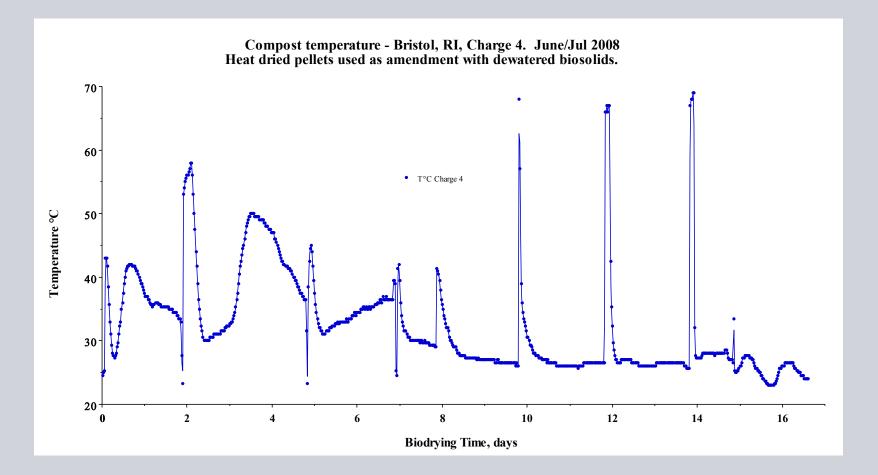
#### **Bay Volume Reduction**

#### Volume reduction in the bay $\approx 20\%$




**Bristol Volume Reduction** 




**Merrimack Volume Reduction** 



#### **Temperature vs. Time (Merrimack)**



#### **Temperature Vs Time with Agitation**



#### **Pilot Study Variables**

### **Uncontrollable Variables**:

- Sludge Solids Content (≥ 20% required)
- Physical/Chemical Properties of the Sludge
- In Bay Volume Reduction (affects recycle quantity)
- Charge Densities/Stickiness (affects process ability and capacity)
- Ambient Air Temperature and Humidity

#### **Pilot Study Variables**

### **Controllable Variables:**

- **Recycle** (minimum 65% solids)
- **Bay charge size** (maximize for heat retention & recycle quantity)
- **Test mix composition** (45% min & biodegradable VS)
- Aeration rates and scheme (optimize for drying first, then PFRP)
- Agitator frequency (once daily)
- Ventilation rates (min. to remove moisture from building ≥ 8 ACPH)

#### **Energy Consumption**

15 year old 25 HP Agitator

#### **Agitator Power to Area Ratio Summary**

| Agitator<br>Motor Power |      | •    |         |
|-------------------------|------|------|---------|
| (HP)                    | (KW) | (m2) | (KW/m2) |
| 25                      | 18.5 | 3.7  | 5.0     |
| 30                      | 22.5 | 3.7  | 6.1     |
| 50                      | 37.5 | 4.6  | 8.1     |
| 100                     | 74.5 | 7.0  | 10.6    |

New 100 HP Agitator





#### **Energy Consumption**

#### **Energy Consumption per Unit of Test Mix**

|                                | Power Consumption per | Power Consumption per |  |  |
|--------------------------------|-----------------------|-----------------------|--|--|
|                                | Volume of Test Mix    | Weight of Test Mix    |  |  |
| Bristol - Fuel                 | 0.4 liters/m3         | 0.8 liters/tonne      |  |  |
| Bristol - Electricity Phase I  | 1.8 KWH/m3            | 3.4 KWH/tonne         |  |  |
| Bristol - Electricity Phase II | 2.9 KWH/m3            | 5.9 KWH/tonne         |  |  |
| Merrimack - Electricity        | 8 KWH/m3              | 15 KWH/tonne          |  |  |
|                                |                       |                       |  |  |

Assumes average density of test mix at 0.53 tonnes/m<sup>°</sup>

Merrimack – agitator used 1 hour per day, assumed full draw traveling the length of the bay blowers ran 3 hours/day



#### **Heat Value Calculation**

#### **Estimated Heat Value of Biodried Biosolids**

|                      | Using Haug's equation for compost, for this :<br>Volatile Heat Value |                |                |                      |          |         |           |                           |
|----------------------|----------------------------------------------------------------------|----------------|----------------|----------------------|----------|---------|-----------|---------------------------|
|                      | Solids                                                               | Dry            | Dry            | Dry Solids<br>Solids | Moisture | •       | Value     |                           |
|                      | % of                                                                 | VS             | Bulk Solids    | Content              | Content  |         | oisture   |                           |
|                      | Dry Solids                                                           | (kJ/kg)        | (kJ/kg)        | (%)                  | (%)      | (kJ/kg) | (kcal/kg) | Notes                     |
| Wet Wood             | -                                                                    | 19,800         | -              | 50                   | 50       | 12,300  | 2,910     |                           |
| Typical Compost      | 87                                                                   | 23,260         | 20,240         | 55                   | 45       | 13,060  | 3,090     |                           |
| Merrimack MEB Output | 62                                                                   | 23,260         | 14,420         | 48                   | 52       | 8,780   | 2,080     | (Lowest Average Recorded) |
| Expected MEB Output  | 62                                                                   | 23,260         | 14,420         | 65                   | 35       | 10,150  | 2,400     | (20% Sludge/45% Test Mix) |
| Bristol MEB Output   | 79                                                                   | 23,260         | 18,380         | 68                   | 32       | 13,290  | 3,140     | (Pass II/Charge II)       |
| Estimated MEB AVG    | 60                                                                   | 23,260         | <b>13,960</b>  | 65                   | 35       | 9,820   | 2,320     | (Based on China samples)  |
|                      |                                                                      | <u>kcal/kg</u> | <u>kcal/kg</u> |                      |          |         |           |                           |
|                      |                                                                      | 5,500          | 3,301          |                      |          |         |           |                           |

Using Haug's equation for compost, for this application only the Volatile Solids (VS) have energy

**Sources:** <sup>d</sup> Equation from *Textbook of Wood Technology* - Panshin, A.J. and C. deZeeuw. 1980.

<sup>e</sup> 23,260 kJ/kg (10,000 BTU/lb) from *The Practical Handbook of Compost Engineering* - Haug, Roger, 1993

#### **Mechanically Enhanced Biodrying (MEB)**

- Mechanically Enhanced Biodrying relies on biological & mechanical processes
- Biodried biosolids can be used successfully as amendment
- Key process boundary conditions to achieve 60% DS in product:

#### Sludge 20% ds at 60% VS and Infeed Mixture at 45% ds

 IPS MEB process effectiveness declines with solids contents lower than above.

# Conclusions

#### **Mechanically Enhanced Biodrying (MEB)**

- Sludge characteristics determine time requirements to biodry and meet PFRP. 20 days will achieve a typical 20 percentage point increase in dry solids
- IPS equipment performed well and not impacted by higher density materials.
- Bay volume reduction of about 20% (sufficient volume to meet process needs and provide surplus for fuel/fertilizer)
- Sufficient time & energy available in MEB process to achieve pathogen destruction if parameters are met

# Conclusions

#### **Mechanically Enhanced Biodrying (MEB)**

- Low temperatures should not impede process if parameters are met
- Higher Heat Value of finished product estimated at 8,500 kJ/kg ≈ 50% wet wood





#### Acknowledgements

# Thank You!

We also gratefully acknowledge the administrators and staff at the Anthony Dupont Composting Facility in Bristol, Rhode Island USA and at the Merrimack, New Hampshire USA Composting Facility.





#### **Contact Information**

#### Lissa Ham

Technical Sales Manager IPS Composting Systems

Siemens Water Technologies Inc. 333 South Street Suite 300 Shrewsbury, MA 01545-4197

| Mobile:    | +1 603 770 0577 |
|------------|-----------------|
| Telephone: | +1 508 849 4748 |
| Fax::      | +1 508 849 4601 |

E-mail: <u>lissa.ham@siemens.com</u> Website: <u>www.siemens.com/ips-composting</u>