

University of Michigan – Ann Arbor Campus-Wide Compost Feasibility Study *USCC January 25, 2011 Nicole Chardoul, PE, Principal and C.O.O.*

416 Longshore Dr. | Ann Arbor, MI 48105 | 734.996.1361 p | 734.996.5595 f | www.recycle.com

OVERVIEW

- Project Objectives
- Background

- Data Collection and Analysis
- Options (Technologies, Sites, Operations)
- Business Case Summary
- Conclusions
- Next Steps

PROJECT OBJECTIVES

 Involve and Educate stakeholders: student sustainability group, food services, custodial, operations, grounds, finance, planning, hospital, botanical gardens

- Develop a most feasible option or combination of options for managing all UM organics
- Produce a business case & next steps
- Work toward UM zero waste goals

TIMELINE

- 7/10-10/10:
 - 7/10:
 - 8/10:
 - 10/10:
- 10/10-12/10:
 12/10:
- 12/10-1/11:

- Data Collection, Analysis, Research
 - Stakeholder Kick-off Meeting
- Stakeholder Update Meeting
- Stakeholder Options Review Meeting
- **Finalize Options**
 - Stakeholder Conclusions Meeting
- Final Report with Economic Analysis for Best Option

Background – Main Considerations

• Cost

- Capital and Operating Costs
- Participation Fee
- Contamination
 - Who's Responsible?
 - How to reduce & educate?
 - Outside Vendors
- Location
 - On-campus or off-campus
- Space

- Carts, liners
- Garbage disposals
- Labor
- Compostable Products
 - **Grounds** Operations
 - Travel Time
 - Collection Frequency
 - Labor
- Buy-in/Support
- Education

BACKGROUND - UM STATISTICS

- UM is one of the largest public universities in the state of Michigan
- Ann Arbor campus
 - 712 acres
 - Student population of 41,674 63% undergraduate (2009)
 - University housing for 10,900 students 30% of the campus's total student population
 - Serve about 22,000 meals per day during school year

BacKground – Current UM Operations

- Program began in 1997
 - 5 Dining Halls, 1 Catering Kitchen, 1 Coffee Shop
- 67 tons of food waste annually
- 32-gal bins picked up 2-3 times/week
- Organics processed at City of Ann Arbor Compost Facility
- All organics + bioware from Business School now processed at Tuthill Farms
- \$40/ton compost tip fee at the City (\$10 more than trash) plus transport and truck costs

Source: Resource Recycling Systems Inc.

FOOD WASTE ONLY!

http://www.housing.umich.edu/ dining/sustainable

YES!

Fruit & Salad Trim Vegetable Peelings Onion Skins Egg Shells Old Bread and Bagels Plain Potatoes or Rice Plain Noodles Coffee Grounds Coffee Filters Paper Egg Cartons Paper Napkins

NO!

Meat, Poultry or Fish Liquids or Sauces Oils, Fats or Butters Cheese, Yogurt Cooked Food Plate Scrapings Foil Rubberbands Polystyrene Foam Plastic Wrap Gloves or Utensils

UM Waste Management Services 763-5539, www.recycle.umich.edu

Data Collection – 2007 Waste sort

Building Type	% Compostable Organic Waste	% Non-Compostable Organic Waste	% Non-Recyclable Paper
Administrative	9.0 %	5.0 %	27.0%
Classroom	4.0 %	3.0 %	27.0%
Research	1.5 %	67.5 %	4.0%
Residence Hall	13.0 %	9.0 %	12.5%
Union	11.5 %	25.5 %	17.0%
Recreational	6.5 %	0.5 %	22.0%

Data Collection – 2007 Waste sort

- Trash
- Recyclables
- Pre-Consumer FW
- Post-Consumer FW
- Non-Recyclable Papers

DATA ANALYSIS

- Case studies of food waste operations at similar-sized universities
- Received trash and compost data on monthly basis in CY
- 5,615 tons of MSW in a landfill each year

Food Waste Bin in Kitchen http://www.housing.umich.edu/node/34

• 1,725 tons of compostables in the landfill each year (about 31% of their waste stream)

Data Analysis – Program Expansion

- Significantly more organics available
 - animal bedding
 - yard waste (currently composted at UM grounds)
 - post-consumer foods and products
 - fats, oils, greases
 - soiled paper towel, napkins and cardboard
- 6 more cafeterias
- 3 more student unions
- Special Events and Athletics, UM Hospital

Data Analysis – Estimated Future Operations (preliminary)

	Current Compost	Pre-Consumer Compostable Materials	Including All Compostable Materials	
Total Annual Trash from Buildings (tons)	24,236	24,236	24,236	
Compostable Fraction (%)	15%	23%	36%	
In-building compostable (tons)	67	2,078	5,269	
Yard Waste (est. tons)	3,500	3,500	3,500	
Annual Compostable Quantity (tons)	3,567	5,578	8,769	

- Estimated Compostable Fraction of refuse from 2007 Waste Sort Report
- Does not include Ross School of Business

Options – Overview

- Roll-out campus-wide program in Phases
 - Begin with residence hall cafeterias
 - Incorporate Ross School of Business compostables
 - Expand across campus
- Centralized or Local, Technology, Sites
 - One large facility
 - Kitchen by kitchen systems
 - On-campus or off-site
- Operational Changes
 - Kitchen, equipment, collection

Options – Overview of Phases

 Phase I: Expand to post consumer composting in the cafeterias from buildings currently collected, collect Ross material and animal bedding

- 446 tons

 Phase II: Expand to compostable to-go containers for same buildings

- 633 tons

• Phase III: Expand post consumer and compostable to-go program to all residence halls and unions

- 1,153 tons

Phase IV: Expand compostable collection to all buildings

– 1,385 tons

Options – Phases

PROPOSED PHASING INCREASE IN COMPOSTABLES

Phase	Food Waste: incl. food waste, napkins and compostable containers (tons)	Other: Animal Bedding (tons)	Total Compostables (tons)	Average Tons per day (including bulking material)
Current	67	0	67	0.3
Phase I	203	243	446	1.5
Phase II	390	243	633	2.2
Phase III	910	243	1153	4.0
Phase IV	1142	243	1385	4.9

TECHNOLOGY OPTIONS

- RFI to ten vendors; 7 responded
- Dry AD is expensive for the available tonnage
- In-Vessel Composting is preferred technology
 HotRot was selected for the business case
 - Wright Environmental and Engineered Compost
 System (ECS) are similar
 - 2.5 tons/day per unit; works for initial program
 - Scalable; Continuous loading
 - Small footprint and small material loading building

Technology Options – In-vessel Composting

- Shorten breakdown time
 - 14-25 days instead of 4-6 months
- Guarantee pathogen destruction
- Need space for receiving & curing
- Batch vs. Continuous
- Centralized (2-50 tpd)
 - Hot Rot, ECS, CV Composter, BioTower
- Local (~2 tpw)
 - Earth Bin, GoMixer

Source: EarthBin

Source: Hot Rot Composting Systems

Source: Engineered Compost Systems

Siting Considerations – Michigan Draft Compost Rules

- Yard waste composting site
 - Limits site to 5% by volume Class 1 Compostables (food waste, paper, compostable products)
 - UM would need to design for Class 1 Compostables Site
- Siting Requirements for Class 1 Site
 - 500 feet from neighbors, 200 feet from property line
 - Impermeable pad
 - Water reused as process water

OTHER SITING CONSIDERATIONS

- Access to electrical connections, 480v
- Area for stormwater basin or rain garden
- Water connection or rain water harvesting system
- 2 acres available land
 - Space for curing pile and storage pile (2-3 months)
 - Space for unloading and loading
- Adequate buffer for noise and dust; visibility
- Cost of development, Distance from material sources
- Proximity and ease of use for UM operations

SitE Options – Process Off-site

Pros

- Contract to third party
- Cost effective tip fees

- Food waste limited at YW compost sites in MI
- Final product not available for campus use
- Educational component/program visibility lost

Site options – Glazier Way Site

Pros

- Location
- Electrical connection
- Capped landfill
- Natural buffers

- Size
- Potential future planning

Site options – North Campus Research Complex

Pros

- Location
- Electrical connection
- Vacant buildings

- Not located with any other operations
- Likely to be developed

Site options – Current Grounds Site

<u>Pros</u>

- Location
- Electrical connection
- Shared operations
- Current YW compost/mulch ops

- Size
- Need site for current operations

Site options – Matthaei Botanical Gardens

<u>Pros</u>

- Size, Electricity
- Proximity to end use
- Combine with current "composting" operation
- Integrate into educational programs
- Site not likely to be developed

• Distance from Main Campus

SITE OPTIONS - SUMMARY

ADVANTAGES OF POTENTIAL SITES FOR PROPOSED COMPOST PROGRAM

Advantage	Glazier Way	Current Grounds	Matthaei Botanical Gardens	NCRC
Sufficient space to site in-vessel operation	\checkmark		\checkmark	\checkmark
Centrally located to campus	\checkmark	\checkmark		
Educational opportunities			\checkmark	
Long-term site potential			\checkmark	
Lack of regulatory hurdles			\checkmark	\checkmark
Available supply of wood chips	\checkmark	\checkmark	\checkmark	
Utilities available	\checkmark	\checkmark	\checkmark	

Site Options – Siting Requirements

- 35'x60' material receiving and shredding building
- 30'x35' covered curing area
- Bio-filter
- Trommel screen
- Finished compost storage area
- Retention pond
- Gravel drive
- 2 hours to operate and maintain each day (5-6 days)

In-Building Options – Operational Considerations

- Kitchen staff and practices
- Consumer outreach & education
- Lined vs. unlined carts
- Equipment (disposals, pulpers)
- Space at the docks
- Minimizing odors

In-Building Options – System Integration

- Phase I, purchase compostable-only products in the dining areas
- Phase II, convert 'to-go' containers to compostable products
- Increase number of 32-gal roll-carts
- Increase freq. of collection: 5 d/wk
- Can reduce frequency of foodwaste/grease interceptor pumping and disposal costs

BUSINESS CASE SUMMARY

• Estimated Capital Cost: Hot Rot System

- Phase I: \$850k
 - Site Costs: \$250k
 - Equipment: \$600k
 - Carts: \$3.5k
- Phase IV: \$1.3 mil
 - Site Costs: \$250k
 - Equipment: \$900k
 - Additional Collection Truck + Carts: \$135k
- Other systems around \$1 mil

Wright Environmental, Engineered Compost Systems

CONCLUSIONS

A LITTLE PERSPECTIVE

- Estimated Cost for Ross Business School Program
 \$33,700 for 1,300 CY (approximately 70 tons/year)
- Estimated Cost for Phase II
 - \$70,000 for 633 tons (excluding capital)
 - Using Ross Program would cost \$195k annually
 - Including Capital Costs: \$172k annually

CONCLUSIONS

Estimated Savings – Phase I

- Reduced pumping for grease interceptors:
 - \$14,500 to Dining Services
- Waste Tip Fees
 - \$8,000 to Plant Ops
- Use of Compost
 - Replacement of purchased top soil
 - \$5,200 to Grounds
- Compost Tip Fees
 - \$2,700 to Plant Ops

COSTS NOT INCLUDED

- Increase in costs for compostable containers
 - Estimates vary widely from no increase to double the cost
 - However, compostable bags for carts ARE included
- No pulpers included in base option
 - Will be summarized in final report as an option

CONCLUSIONS

NEXT STEPS

- Sit down with WeCare Organics
 - May be willing to accept wider variety of materials than City
- Develop Pilot for one cafeteria to test assumptions
 - Determine system that works best for cafeteria
 - Students scrape plates? 3 day a week collection or 5?
 - Effects on odors in cafeterias or at docks
 - Monitor contamination
 - Recruit students to help with education
- Details in-house costs
- Determine funding sources

QUESTIONS/DISCUSSION

Thank you for your time and attention!

Nicole Chardoul 734-417-4387 (cell) 734-996-1361 x 227 (office) <u>nchardoul@recycle.com</u> <u>www.recycle.com</u>

