Composting air emissions:

New Research & Regulations

Jan. 25, 2011

Bob Horowitz Robert.horowitz@CalRecycle.ca.gov

This Presentation

- CalReycle compost emissions reactivity studies
- 2. CalRecycle compost GHG study
- 3. San Joaquin and South Coast air district rule updates
- 4. New Source Review

2009-2010 Compost Emissions Reactivity Studies

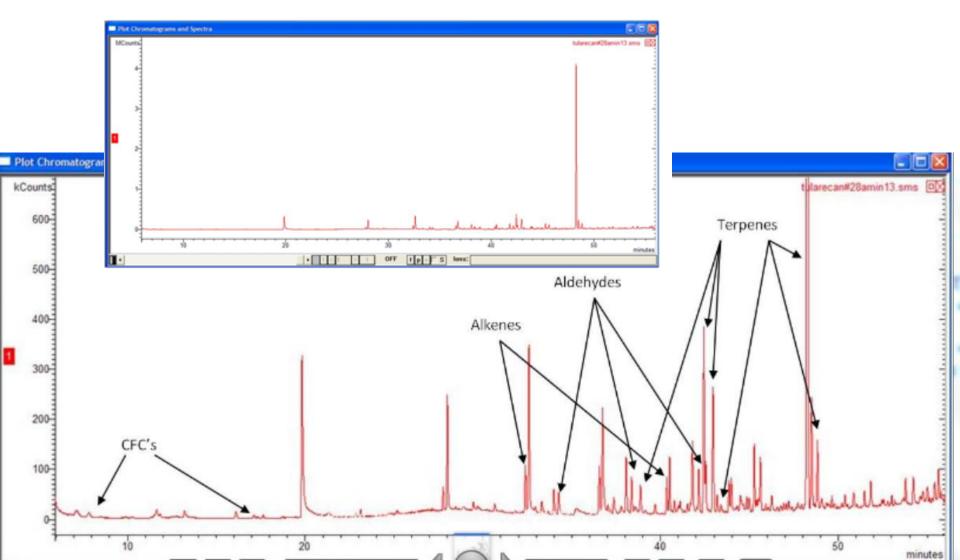
- Focused on ozone formation potential (OFP), not VOC emissions factors
- Highly reactive VOCs have high OFP
- Identify all C compounds in the emissions
- Tested OFP of windrows, tip piles, overs
- Tested impact of a pseudo-biofilter overs cap on OFP

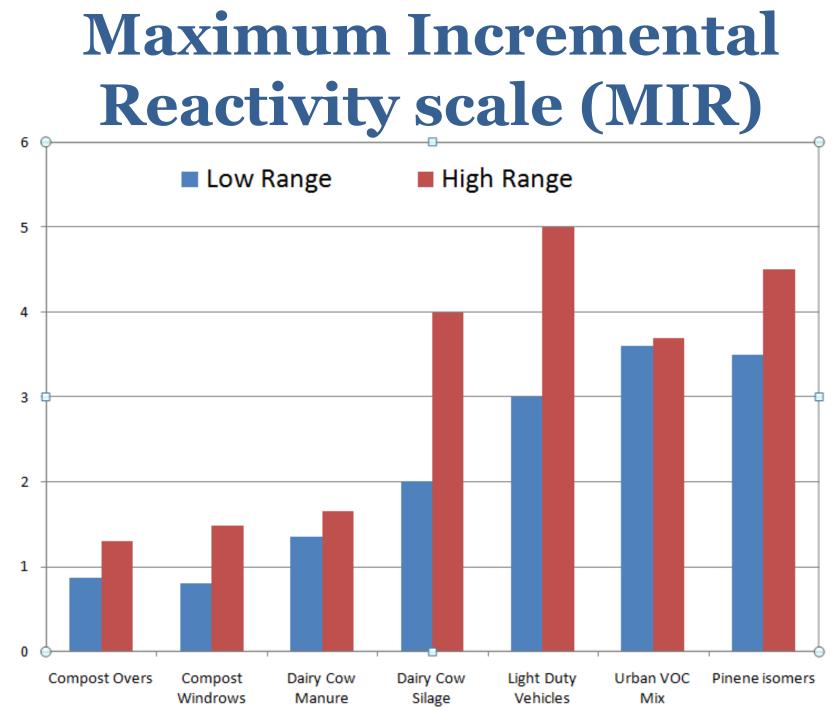
The Mobile Ozone Chamber Assay

a.k.a. MOChA chamber

Inside the MOChA chamber

A Contractor


Fall-Winter, 2009


- Funded by StopWaste of Alameda County, Tulare County Compost & Biomass, Grover Landscaping Inc., All Valley Environmental, Tracy Material Recovery, City of Modesto
- Studied tipping piles, 5-day old windrows, 21day old windrows
- Learning curve: dealing with high moisture
- Article in press, peer-reviewed journal, *Atmospheric Environment*, this winter

Bottom Line from Phase 1

- Compost emissions 80-95% ethanol, wood alcohol, isopropyl alcohol
- Light alcohols have low OFP
- More than 80 other compounds
- 1-3% highly reactive terpenes, aldehydes
- Windrow and tipping pile OFP low
- 3-week-old windrow slightly higher OFP than
 5-day-old windrow

Spectrometer reading from compost emissions

Second phase of the project Spring-Summer, 2010

- Funded by CalRecycle
- Studied 6-week old windrows, overs piles
- Compared emissions from matched pairs of composting windrows:
 - -5 days old and 21 days old
 - -Pseudo biofilter overs cap or not
- Report to be published by CalRecycle

Bottom Line from Phase 2

- Overs piles make almost no ozone
- OFP of 6 week-old piles very low
- Alcohols more than 90% of emissions
- Overs cap >25% effective in reducing OFP
- 3-week-old windrows still have higher OFP than younger windrows
- Maximum Incremental Reactivity of composting emissions mix .9 1.5: LOW

Compost cap was effective

- Average of two replicates
- Overall emissions reduced
- Reactivity of the capped mix not reduced

	Average O ₃ reduction in ppbv	Average O ₃ reduction in %	Method
5-Day Windrow	4.2	26.8%	MOChA only
5-Day Windrow	16.3	57.3%	MOChA and model
21-Day Windrow	16.4	36.1%	MOChA only
21-Day Windrow	23.0	50.4%	MOChA and model

Compost GHG study

- Funded by CalRecycle, contractor is UC Davis
- Focus on N20 and CH4
- Draft study plan finalized in November
- Field work 2010-2012
- Final report June 2012

Two-pronged approach

1. Measure CH₄ and N₂0 from composting windrows

2. Measure N₂0 and CH₄ emissions from compost amended and conventionally fertilized croplands

GHGs from composting facilities

- Existing data comes from Europe and mostly concerns mixed waste
- Multiple methods to be used
 - Flux chambers
 - Access tubes into the pile
 - Micro-meteorological approach
- Year-round sampling
- Existing EPA/ARB estimates could be low

Compost impacts on cropland GHGs

- Micro plots at UC Davis Russell Ranch site
- Field testing in tomato and nut farms
- Variable rates of compost
- Compost alone and also mixed with variable rates of N fertilizers
- Will measure yields
- Focused sampling after fertilization and irrigation / first rains

San Joaquin Rule 4566 Sept. 22, 2010 draft

- Feedstock holding times: 3 days all materials or cover with 6" compost cap
- Keep stockpiles below 122° F (50° C)
- Small facilities (<10,000 tpy): BMPs
 - Maintain O2 at 5% or above
 - Maintain H2O at 40-70%
- Keep stockpile and throughput records
- File plan with district on how to meet rule
- Go to air district board in April or May, 2011

2009 San Joaquin APCD study

Study: Irrigation system used for 3 hours before turning reduced emissions by 24% over first 3 weeks

Rule 4566: Facilities between 10,000-200,000 tpy must achieve 24% reduction.

2009 San Joaquin APCD study

Study: Pseudo-biofilter compost cap reduced emissions by 53% over first three weeks.

Rule 4566: Facilities over 200,000 tpy must achieve 53% emissions reduction

Rule 1133 (South Coast AQMD) Greater Los Angeles area)

- 1133.1 to be amended: feedstock holding times AFTER chipping/grinding, 3 days
- Same feedstock requirements for composters
- 3 days after grinding, use feedstocks as ADC, remove from site, or compost
- No passive static piles
- Looking for feedback on optimum temp, H₂O, O₂
- Facilities >10% foodwaste by weight need aeration system vented to biofilter
- Go to air district board in May, 2011

New Source Review in the SJV

- Not a future theoretical; here, now
- Any new facility with VOC emissions greater than 10 tons per year
- Any expanded facility with VOC increase greater than 2 pounds per day
- SJV emissions factor 5.71 lbs of VOC per ton of greenwaste feedstock
- Offset purchase at 1.5:1 ratio for each ton of emissions over 10 tons per year

Outdoor ASP 85% VOC Capture / 500 tpd

TE

\$35 million
Biosolids and bulking agents
Fully enclosed tipping and mixing areas
Negative aeration to biofilter
Synagro-Southern Kern County

Fully enclosed ASP 95% VOC capture 420 tpd

\$80 million
Biosolids and bulking agents
Converted IKEA warehouse vented to biofilter
Inland Empire Utilities District - Rancho Cucamonga

Offset calculations

<u> </u>	4	
Emission factor	5.71	pounds of VOC per wet ton (windrow)
NSR limit	20,000	pounds per year
Incoming tons	500	tons per day
	1,000,000	pounds per day
	156,000	tons per year 6 days per week at max input
Emissions	2,855	pounds VOC per day
	890,760	pounds VOC per year
ASP reduction @ 85%	757,146	pounds VOC removed
ASP reduction @ 95%	846,222	pounds VOC removed
Remaining emissions at 85% capture	133,614	pounds VOC emitted
Remaining emissions at 95% capture	44,538	pounds VOC emitted
Offset threshold	20,000	
NET at 85% capture	113,614	Cost at \$18k/ton, 1.5:1 ratio \$ 1,533,789.00 OFFSETS
NET at 95% capture	24,538	Cost at \$18k/ton, 1.5:1 ratio \$ _331,263.00 OFFSETS

Is this a factor in such a large investment?

Any questions?

Bob Horowitz (916) 341-6523 Robert.horowitz@calrecycle.ca.gov http://www.calrecycle.ca.gov/Organics/Air/default.htm