Characterizing Compost and Anaerobic Digestion Products

Ron Alexander, R. Alexander Associates, Inc. 1/26/10

🕞 R. Alexander Associates, Inc. ©

What are you selling?

...a 'product' or just 'brown' stuff ?

The marketplace has become more sophisticated

Buyer's Requirements

What are they willing to buy?

Soil Incorporant

- Agricultural crop estab.
- Turf establishment
- Garden bed preparation
- Reclamation/remediation
- Nursery production
- Roadside Vegetation

Growing Media Component

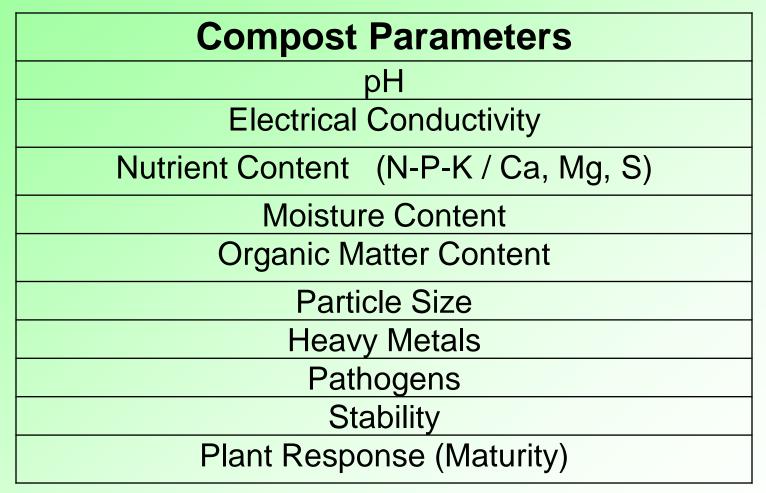
- Container/potting substrates
- Landscape (e.g. rooftop, raised planters)
- Backfill mixes (tree/shrub)
- Golf course (e.g. tee, green, divot mixes)
- Manufactured topsoil

Buyers have different requirements

Monitor Product Quality & Process

INTERNAL PURPOSES

- Assists in optimizing the composting process
- Generate data for use in facility problem solving
- QA/QC



EXTERNAL PURPOSES

- Illustrate product characteristics & consistency
- Generate data crucial for product sales
- QA/QC Certification programs are helpful

Uniform/Appropriate Level of Testing

What should I test for? Depends on end use Still struggling to get industry to test properly

STA Approved Labs

- A&L Canada Laboratories London, Ontario, Canada
- A&L Great Lakes Labs, Inc. Ft. Wayne, IN
- A& L Western Laboratories, Modesto, CA
- Ag Analytical Services Lab State College, PA
- Colorado Analytical Laboratories, Brighton, CO
- Midwest Laboratories, Omaha, NE
- Soil Control Lab Watsonville, CA
- Soil Test Farm Consultants, Moses Lake, WA
- Woods End Laboratories Mt. Vernon, ME

Use an experienced 'organics' lab !

Sample Collection and Laboratory Preparation Field Sampling of Compost Materials 02.01

Test Method: Selection of Sampling Locations for Windrows and Piles				Units: NA				
			Test !	Method Applica	tions			
Process Management					Product Attributes			
Stap J: Feedateck Receivery	Step 2: Feedback Properation	Step 3: Compositing	Step & Odor Travinsent	Step 5: Compost Curing	Step 6: Compose Screening and Refining	Nep 7: Compose Storing and Packaging	Safery Standards	Meriles Attributes
		02.01-B	02.01-B	02.01-8	02.01-B	02.01-B	02.01-B	02.01-B

02.01-B SELECTION OF SAMPLING LOCATIONS FOR WINDROWS AND PILES

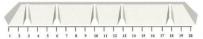


Fig 02.01-B1 Hypothetical sample collection pattern from a compost windrow

NOTE 1B—In this example, a scale from 1-20 is superimposed on the long dimension of a compost window. Five distances (3, 6, 10, 13 and 18 m) are randomly selected to each side of the window, (e.g., runnbers modely pulled from a bah), is assign sample collection locations. Point-samples are collected from within three zones at each cutout.

NOTE 2B-The illustrated cut-outs are depicted on one side of With a set of the windows, in a real operation, the cut-outs must be randomly assigned to each side of the windows. Cone-shaped piles have a circular base. Measure around the base of a cone-shaped pile and randomly assign cutout positions along the pile's meridian, are atoms from the set of the pile's meridian.

10. Apparatus for Method B

10.1 Sampling Container-five 16- to 20-L (4- to 5gal), plastic (HDPP), glass,

10.1.1 Organic Contaminant Tests-For samples to be analyzed for the presence of organic contaminants, please refer to Table 02.01-6 Organic Contaminant Tests: Sampling containers and conditions for compost and source ingredient testing. Modify sample packaging steps presented in this section accordingly.

10.2 Sampling Device-silage auger, tilling spade, or other appropriate sampling device.

10.3 Tractor Loader-with loader, (e.g., Bobcat, etc.) 10.4 Trowel-high-density polypropylene (HDPP),

for stirring and mixing composite sample. 10.5 Pail-16- to 20-L (4- to 5-gal), square pails, Use

standard 5-gal plastic pails for shipping only when square pails are not available (e.g., square pails are available through Cheveland Iotite & Supply Co.: 850 East 77th Street, Cleveland, OH 44103; telephone: 216 881 3330, Fax: 216 881 7325;

11. Reagents and Materials for Method B 11.1 Plastic Bags-three 4-L (1 gal) durable bags with seal, (e.g., Ziploc[®] Freezer bags).

August 27, 2001

11.2 Plastic Gloves. 11.3 Tarp-clean plastic, canvas, or other type of mixing surface if feedstock is liquid sludge. 11.4 Cold Packs-chemical ice packs, or 4-L plastic bags (e.g., heavy duty Ziploc® freezer bags) filled with

approximately 0.5 L of water and frozen flat. One ice pack per 4-L sample container of compost to be shipped, (e.g., three ice packs are recommended for three compost 4-L samples).

11.5 Aluminum Foil-lining for plastic shipping pail,

11.6 Packing Material-newspaper or other appropriate bulking material to be used as packing or fill to minimize sample movement within the shipping container (square pail) during shipping.

11.7 Adhesive Tape-duct tape, 5-cm (2-in.) width.

12. Procedures for Method B

12.1 Cut into Finished Compost-Using tractor skid-12.1 Car mit problem compared with the standard state loader, bobent or shovel, or sample boing device, cut into the finished compost pile or windrow at five or more randomly selected positions. Collect samples from the full profile and breadth of the compost windrow or pile. Refer to Fig 02.01-B1.

12.2 Collect Point-Samples-Samples of equal volume are extracted from the compost pile at three depths or zones measured from the pile's uppermost surface. Collect no less than five point-samples from each of the three depths or zones illustrated in Fig 02.01-B2. The five point samples for each zone must be collected in a manner to accurately represent the horizontal cross-section of the windrow or pile. Use a sanitized sampling tool (a gloved hand, clean shovel or auger) when collecting samples and when transferring samples to the 5-gal sample collection pail.

Test Methods for the Examination of Compositing and Composi

Fig 02.01-B2 Fiv

NOTE 38—(1) upper $^{1}j_{3}$ of compost profile height, (2) middle $^{i}j_{3}$ of compost profile height, and (3) lower $^{i}j_{3}$ of compost profile height, where compost pile does not exceed the recommended overall height of 3 m. Create more than three sampling deglins comene within each catooit when the coring pile exceeds a height of 3 m, relative variability in high or the property of interest is fload at very low concentrations, near the story detection limit

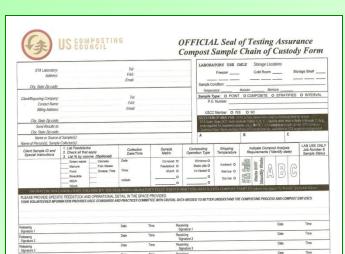
12.3 Composite Point-Samples-Place all 15 point samples from one cutout together into one sanitized plastic pail. Completely mix the point samples by stirring thoroughly with a sanitized wooden stick or lath, and by covering and shaking the pail to further mix the samples.

12.3.1 Repeat the blending process at least four times until all point samples are thoroughly blended to form one composite sample that accurately represents the compost for the cutout.

cutouts.

Use proper lab test methods, sampling

and sample handling procedures


12.3.3 Composite Sample-Transfer the five composite samples from the sample collection pails onto a mixing tarp or other appropriately sanitized surface or container, such as into a large pail where all samples can be mixed, blended and then covered to minimize moisture loss. Thoroughly blend the five composite samples to form one large sample that sents the average condition of the entire batch or windrow in question.

12.3.3.1 Quarter the composite sample and thoroughly mix and quarter again. Continue to subdivide and split the sample into quarters and mix as described until sample size reaches approximately 12 L. (2) = 0. (3 gal). 12.4 Stratified Sampling-This sample collection

strategy is used to evaluate for the presence of spatial variations or gradients in compost characteristics across and through a windrow or pile.

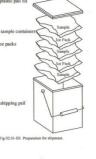
12.4.1 Stratified Samples across Cutouts-Use this sampling strategy to test for differences in compost characteristics between sample cutouts and along the longer dimension of a windrow. Do not comp materials from the five separate cutouts when

Test Methods for the Examination of Composting and Compost

Sample Collection and Laboratory Preparation 02.01 Field Sampling of Compost Materials

Releasing Signature 4

monitoring for the presence of gradients along the longer dimension of a windrow. Pack and prepare five separate samples (i.e., five separate composite samples one from each cutout) for shipment as described in ster


12.4.2 Stratified Samples within Cutouts-Use this sampling strategy to evaluate for the presence of spatial variations or gradients that occur with changes in pile depth or distance from the windrow core to its surface. 12.5 Prepare for Shipment and Storage:

12.5.1 Transfer the blended compost to three 4-L (1-gal) sample bags, (e.g., plastic Ziploc® freezer bags). 12.5.2 Line the shipment pail with aluminum foil or other reflective material to minimize sample heat-gain. Place the sample bags containing the compost san into the plastic pail and interleave with ice packs for

shipping (refer to Fig 02.01-B3). 12.5.3 Cover the pail with its lid. Seal and secure the lid with a packing tape. Send the sample pail by oneday express delivery service to your selected laboratory or analysis. Include a chain of custody information neet with environmental regulatory samples (Refer to Method 02.01-E).

NOTE 3B-Maintain cool samples at 4°C (39.2°F) to duminish microbial and chemical activity prior to and during sample

Three 4-L sample cor Two 4-L ice nacks Foil lined shipping pail Fig 02.01-B3 Preparation for shipment

August 27, 2001 02.01-15

12.3.2 Proceed to the next compost sample cutout and repeat this process to collect one thoroughly blended composite sample from each of the five Foil lined plastic nail lid

Compost Certification and Registration

Associ	the second second
atton of while	Voan Plant Food Control

Helping to promote and justify proper/on-going testing

Organic Matter Based By-Products / Feedstocks

- Municipal
- Industrial

Energy

Other

Agricultural

Understand that incoming feedstock(s) affects finished product characteristics

R. Alexander Associates, 9nc. ©

Factors Affecting Product Characteristics

- Feedstocks
- Composting / AD processes
- Post processes

Compost Characterization

Poor job as an industry collecting and analyzing (studying) data, STA change

National Compost Data

	Moisture	Organic Matter	Ash %	Bulk Density	рН	EC5	Carbonate	Germination	Vigor
	%	% Dry wt	% Dry wt	lb/cu ft wet		dS/m	as CaCO3 Ib/ton dry	% relative to pos. control	% relative to pos. control
MIN	0.8	1.1	1.0	7.9	3.5	0.1	0.0	0.0	0.0
MAX	88.3	99.0	98.9	101.6	12.1	61.6	1401.3	100.0	100.0
AVE	39.1	46.7	53.3	41.9	7.7	6.0	24.5	80.0	84.2

Important to track industry trends, but needs to evaluated by feedstock, geography, etc.

Compiled data (1 lab)

National Compost Data

	Ν	С	C/N Ratio	NH₄-N	NO ₃ -N	Organic N	Ρ	К	Са	Mg	SO4
	% Dry wt	% Dry wt		mg/kg dry wt	mg/kg dry wt	% Dry wt	mg/kg Dry wt	% Dry wt	% Dry wt	% Dry wt	mg/kg dry wt
MIN	0.0	0.1	2.8	0.0	0.0	0.0	67.9	0.0	0.0	0.0	5.0
MAX	13.3	94.6	517,200	1.9	1.1	13.3	84,768	4.8	51.8	11.6	560,000
AVE	1.7	25.0	271.8	0.1	0.0	1.7	6252.2	0.9	3.7	0.6	3,913

Nutrient data very important to ag (& other) markets Evaluate quality of data, remove outliers, etc.

Single Composting Facility Compiled Data

Characteristics	Units of Measure	Average	Min	Max
NUTRIENTS				
Total Nitrogen	%, wet wt. basis	0.61	0.41	0.78
Ammonia (NH ₄)	ppm, wet wt. basis	395.05	9.70	980
Nitrate (NO ₃)	ppm, wet wt. basis	141.92	3.00	420
Org. Nitrogen	%, wet wt. basis	0.56	0.39	0.75
Phosphorus (P ₂ O ₅)	%, wet wt. basis	1.01	0.76	1.3
Potassium (K ₂ O)	%, wet wt. basis	0.52	0.43	0.63
Calcium	%, wet wt. basis	4.93	3.60	6.4
Magnesium	%, wet wt. basis	0.35	0.29	0.4
Sulfate (SO ₄ -S)	%, wet wt. basis	1,711.54	650.00	2400
Iron	%, dry wt. basis	19,077	14,000	24,000

Compiled for ease of evaluation, and to understand trends, consistency, etc.

OTHER PARAMETERS	Units of Measure	Average	Min	Мах
PHYSICAL				
Moisture	%, wet wt. basis	37.84	29.80	47.3
Organic Matter	%, dry wt. basis	30.73	25.80	46.4
Bulk Density	Lbs/cubic yard wet wt.	53.38	41.00	85
pH Value	Units	7.27	6.94	7.73
Electrical Conductivity	dS/m2 (mmhos/cm), dry wt. basis	4.97	2.70	6.5
Particle size	% passing 9.5mm sieves, dry wt. basis	98.37	87.00	100
C:N Ratio	Ratio	16.77	13.00	25
BIOLOGICAL				
Stability	mg CO2-C/g OM/day	1.18	0.20	2.8
Maturity – Emergence	average % of control	100.00	100.00	100
Maturity – Vigor	average % of control	95.25	80.00	100

Understand what you are producing / selling, who to sell to Get help interpreting (opinions, interests in data differ)

Consumer Use Program Lawn Class

Parameter				
		Preferred	General	
рН	pH units	6.0-7.5	5.5 – 8.5	Modify soil pH with lime, etc., if necessary, based on soil testing results.
Soluble Salts (Electrical Conductivity)	dS/m (mmhos/cm) dry weight basis	Maximum of 5	Maximum of 15	Keep in mind that soluble salts are also plant nutrients. Compost containing a higher soluble salt content should be applied at lower application rates, and 'watered in' well.
Moisture Content	% wet weight basis	40-50%	35-65%	Products with higher moisture contents may be used, they may simply be more difficult to spread
Organic Matter Content	% dry weight basis	35-50%	25-65%	Creating a soil containing 5 – 10% organic matter is desirable in typical, well drained soils.
Particle Size	Screen size to pass through	3/8"	1⁄2"	Compost topdressing should be screened through a 1/4 - 3/8" screen, depending on grass mowing height.
Stability	mg CO ₂ -C per g OM per day	<2	<4	The lower the number, the more completely composted
Maturity	% seed emergence & vigor	90-100	80-100	The higher the percentage the better
Physical Contaminants*	% dry weight basis	<0.5%	<1%	Small stones may be deemed more acceptable than man-made inerts (e.g., plastic)

Can you meet product spec of buyers? More spec coming, helps in expanding markets

Remember, not all composts are alike !

Primary Feedstock	Wood Compost	MSW Compost	Yard Trimmings Compost	Cotton Boll Compost	Cattle manure Compost
PHYSICAL					
Moisture Content (%)	28.3	36.1	30.7	38.4	29.8
Total Solids (%)	71.8	64.2	69.4	61.8	70.2
CHEMICAL					
рН	5.9	7.4	7.4	8.1	8.9
EC (dS/m)	0.3	6.4	4.0	4.2	12.1
PO₄-P (mg/L)	2.0	1.3	1.1	86.3	45.6
TKN (% w/w)	0.3	2.0	1.0	1.5	2.2
NO ₃ -N (mg/kg)	5.5	355.3	447.0	78.0	19.8
NH₄-N (mg/kg)	1.2	14.0	9.5	61.7	1835.5
NH ₄ -N / NO ₃ -N (Ratio)	2.0	5.0	0.0	0.0	36.0
Fe (mg/kg)	4,734	8,896	11,300	3,645	5,285
C:N (Ratio)	161.0	10.9	12.0	15.0	12.2
CCE (% w/w)	2.8	16.4	-	5.0	9.1
BIOLOGICAL					
Seedling Emergence (%)	99.0	95	100.0	100	5
Seedling Vigor (%)	5.5	71.0	97.6	90.0	1.0
CO ₂ Evolution (mg/gTS/d)	0.5	0.6	0.7	0.9	2.0
Salmonella (MPN/g dw basis)	0.0	0.0	5.8	3.1	1.5
T. Coliform Bacteria (MPN/g dw basis)	1,400	10.8	4.0	5.4	1.8

TO THE COMPOSTING

AD Product Data

AD Processes

- Technology/process will affect
- What you produce, and
- Necessary post digestion processes
- High vs. low solids digestion

Match feedstock to technology

Product Data - Solids

Characteristics	Units of Measure	Compost	Fiber
Total Nitrogen	% dry wt	2.2	1.4
Total Phosphorus (P ₂ O ₅)	% dry wt	1.3	1.1
Total Potassium (K ₂ O)	% dry wt	3.0	1.6
Calcium (Ca)	% dry wt	2.1	2.3
pH Value	Units	8.74	8.58
Electrical Conductivity	mmhos/cm	11.01	9.72
Organic Matter	% dw	79	86.7
C/N Ratio	Ratio	20	37
Moisture	%	66.1	69.2
Stability	mg CO ₂ -C/g OM/day	1.5	5.6
Maturity - Emergence	%	100	N/A

Understand product – manure feedstock, low solids AD, little US data on biowaste

↑ Composting digester solids - aerobically

Processed and dried \rightarrow

Different methods of processing

AD Liquid

Liquids

- Fertilizer – dilute or concentrate (?)

Still a lot of work to be done !

(nutrient value offset transportation cost?)

Product Data - Liquid

Nutrients	mg/kg	Other	
Total Nitrogen	6005	Percent Solids	5.8 %
Ammonia Nitrogen	5825	pH Value	8.09 units
Nitrate Nitrogen	125	Electrical Conductivity	78 mmhos/cm
Organic Nitrogen	55	Respiration Rate	9643 mg CO2- C/L/day
Total Phosphorus (P ₂ O ₅)	1133	Organic Carbon	19069 mg/kg
Total Potassium (K ₂ 0)	4425	Humic Acid	2876 mg/L
Calcium (Ca)	1907	Turbidity	7640 NTU
Magnesium (Mg)	769	Suspended Solids (SS)	17000 mg/L

Understand product – manure feedstock

High Solids AD

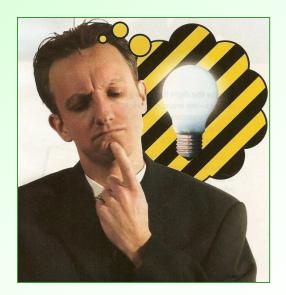
Easy to compost post digestion

No water to deal with

High Solids AD Data*

Characteristic	Fresh Feedstock Blend (fresh mass)	After 28 days Digestion (fresh mass)
Total Solids (g/L)	42,428	36,344
K (mg/kg)	6,619	6,069
K ₂ Ο (mg/kg)	7,976	7,314
Mg (mg/kg)	2,414	2,551
P (mg/kg)	1,816	1,501
P ₂ O ₅ (mg/kg)	4,158	3,437

*Biowaste – food/green


Product Development Through Blending / Characterization

What does the market want / need ?

Do the research, trials, testing

What can be produced?

Use testing to figure it out !

Blending Trials

Dangerous without proper characterization and research

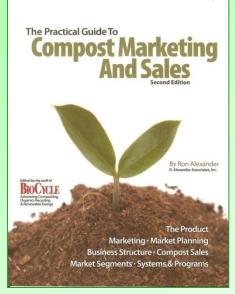
Root Zone Guidelines vs. Blending Data

	USGA	STRI Golf Guidelines	90 : 10 Sand:	85 : 15 Sand:	80 : 20 Sand:
<u>Characteristics</u>	<u>Guidelines</u>	<u>(UK only)</u>	<u>Compost</u>	<u>Compost</u>	<u>Compost</u>
Saturated Hydraulic Conductivity	≥ 150 mm / hr	≥ 150 mm / hr	780	577	429
Total Porosity (%)	35 - 55 %	≥ 35 %	38.2	39.3	39.1
At 30 cm Tension					
Air-Filled Porosity (%)	15 - 30 %	≥14 %	16.6	17.5	12.5
Capillary Porosity (%)	15 - 25 %	≥17%	21.6	21.8	26
Bulk Density (g/cc)			1.6	1.57	1.54
Particle Density (g/cc)			2.59	2.58	2.53
	1% - 5%				
Organic Matter Content (%)	(2-4% ideal)	0.5 - 3.5 %	1	1.3	1.4
At 40 cm Tension					
	Not	Not			
Air-Filled Porosity (%)	Applicable Not	Applicable Not	26.6	26.6	23.6
Capillary Porosity (%)	Applicable	Applicable	11.6	12.7	15.6
рН			6.6	6.5	6.3

Blended Topsoil Compost

Characteristics	Units of		1:2 Compost :	1:1 Compost :
	Measure	Sandy soil	Sand	Sand
Nutrients				
Carbon	%	2.51	3.9	4.86
Nitrogen	%	0.05	0.16	0.25
Phosphorus (P)	ppm	56	95	113
Potassium (K)	ppm	26	417	608
Calcium	ppm	441	849	1023
Magnesium	ppm	107	192	243
Zinc	ppm	47.1	43.5	40.4
Copper	ppm	3.6	3.4	3.2
Sulfur	ppm	31	51.5	53.1
Other Parameters				
Organic Matter	%, dry wt. basis	0.3	1.5	1.8
pH Value	Units	7.5	7.5	7.7
Electrical Conductivity	dS/m ²	0.1	0.34	0.43
CEC	meq/100g	3.2	6.9	8.7
Particle Size Analysis				
Sand	%	95.2	93.3	92.5
Silt	%	1.1	1.7	2.4
Clay	%	3.7	5	5.1
Textural Classification		Sand	Sand	Sand

Test for parameters important to customers and application



Conclusions / Comments

- Industry has appropriate testing methods developed
- Characterization data is being collected for composts (needs to be analyzed, nationally)
 - Some composters are testing, effectively using the data (many collect data and *store* it)
- Little investment has been made into studying AD products in the U.S.
 - National funding available?
- Industry must take product development seriously

QUESTIONS?

Available through Biocycle....

