US Compost ng Council

Spotsylvania County's Expanded Biosolids Composting Facility Uses Advances in Aerated Static Pile Technology

by

Todd O. Williams, P.E., BCEE January 26, 2011 USCC 19th Annual Conference and Tradeshow Santa Clara, California

Spotsylvania County's Expanded Biosolids Composting Facility Uses Advances in Aerated Static Pile Technology

Co-Authors

- Ed Petrovitch, Spotsylvania County
- Doug Crooks, Spotsylvania County
- Ben Loveday, Spotsylvania County
- Chris Easter, CH2M HILL
- Mohidur Rahman, CH2M HILL

Spotsylvania County, Virginia

Population = 120,000 50 miles South of Washington, DC 50 miles North of Richmond

Virginia

Imagery Date: Feb 1, 2007

Maryland 301 Arlington 395 Washington Alexandria

(270)

Spotsylvania Livingston Composting Facility

17

Rmage 2010 commonWealth of Virginia

© 2010 Google Image U.S. Geological Survey lat 38.277231° Ion -77.472914° elev 0 (t

H2MHILL

SPOTSYLVANIA COUNTY, COMPOSTING OVERVIEW of OLD FACILITIES

- Covered Aerated Static Pile Composting
- Demonstration Initiated in 2001
- Full Scale Implemented in 2003
- Belt Filter Dewatered Undigested Solids
- Average 16% Cake Solids
- Capacity = 27 Wet Tons per Day
- Ground Brush is Primary Bulking Agent
- Capital Cost of Original Facilities ~ \$2M

WWTP RESIDUALS CAKE

OLD BULKING AGENT STORAGE

OLD MOBILE BATCH MIXER

OLD ASP AND BUILDING

OLD AERATION SYSTEM

OLD AERATION

Positive Aeration Only
Above Ground HDPE Pipe
Cycling Timers

SCREENING WITH TROMMEL

COMPOSTING FACILITY EXPANSION NEED

Composted Dewatered Solids From Massaponax WWTP Only

- 240 tons/week (12,800 tons annually)
- Landfilled Solids From FMC WWTP
 - 120 tons/week
- Old Facility was Operating at Capacity
- Needed to Expand to Manage Solids Production Through 2025
 - Planned Capacity of 560 tons per week or 29,250 tons WWTP Solids per year

SPOTSYLVANIA COMPOSTING FACILITY EXPANSION FEATURES

- Incorporates Existing Structures and Equipment
- Incorporates Significantly Upgraded Process Controls
- Includes Odor Control
- Capacity is 80 TPD of Dewatered Solids, 7 days per week
- Capital Cost of Expanded Facilities = \$15.5M

EXPANDED COMPOST FACILITY KEY ISSUE: ODOR CONTROL QUESTIONS

- What degree of odor control would be required?
- Should the facility be enclosed?
- How should odor control vs. capital cost be balanced to achieve the level of odor control needed without expending excessive engineering and capital costs?
- The first step was to perform odor sampling of two design approaches and then to model the performance expected

ODOR SAMPLING/TESTING

- Open Hood with Evacuated Chamber Sampler for Positive Aeration
- Flux Chamber with Sweep Air and Evacuated Chamber Sampler for Negative Aeration

CH2MHILL

ODOR SAMPLING

Sampled Compost Piles in Positive Aeration Mode
 Fans On, Fans Off

- Sampled Compost Piles in Negative Aeration Mode
- Sampled Compost Pile Exhaust
- Sampled Cure Piles in Positive Aeration Mode
 - Fans On, Fans Off
- Measured System Airflows
- Sampled Mix Building
- Calculated System Emission Factors
- Developed Odor Model with ISCST3 Using Local Meteorological Data (2006)

Demonstration Odor Emissions from Positive Aeration ASP

CH2MHILL

ODOR EMISSION ESTIMATE

Proposed Expansion Configuration

	Positive Aeration Emissions		Negative Aeration Emissions		% Capture Compared
	OU/Sec	% of Total	OU/Sec	% of Total	Aeration Mode
Compost	6,850	77	200	9	97
Curing	2,040	23	2,040	91	0
Total	8,890	100	2,240	100	75

Odor Emissions W/O Biofiltration

Curing

Odor Emissions With Biofiltration

DEMONSTRATION RESULTS

- Based on these results, it appeared that the original facility could be expanded by 3 times the capacity without further odor impact using continuous negative aeration and odor treatment with biofilters
- Odor modeling was performed to validate this hypothesis

COMPOSTING FACILITY EXPANSION ODOR MODELING

- ASP Compost Facility Expansion
- Compare Existing Conditions to Future Conditions
 - Phase II Expansion to 3X Current Capacity
 - Phase III Expansion to 6X Current Capacity
- Goal of 7 D/T at Offsite Receptor Locations
- Emission Points Included
 - Biofilters
 - Compost & Mixing Building Up Blast Fans
 - Curing Piles

Odors From Old Operation at 6.67 DT/day with No Biofilters

Predicted Phase II Expansion Odors at 18 DT/Day with Biofilters

Predicted Phase III Expansion Odors at 36 DT/day with Biofilters

Phase III Expansion with Biofilters and Enhanced Dispersion

COMPOSTING FACILITY EXPANSION ODOR MODELING RESULTS

- Expansion Meets Target Odor Limit of 7 D/T at all Offsite Receptor Locations
- Phase III Expansion will Require Covering the Biofilters and Adding Up Blast Dispersion Fans to Achieve Target Odor Limit at all Offsite Receptor Locations

COMPOSTING FACILITY EXPANSION KEY DESIGN CRITERIA

- 18 DTPD (112.5 WTPD) capacity, 5 days per week
- 16%TS cake solids on average
- Mixing 4 hours per day, 5 days per week
- In-ground compositing aeration system
- Continuous negative aeration during composting
- Odor control with maintenance redundancy
- Positive aeration during curing

SPOTSYLVANIA COMPOSTING PROCESS FLOW DIAGRAM

SPOTSYLVANIA COMPOSTING EXPANDED FACILITY

NEW BULKING AGENT STORAGE

MIXING WITH BATCH MIXERS

•Two 22 CY Mixers •Weigh Scale Operation •30+ TPH Solids Capacity

PILE BUILDING

COMPOST AERATION SYSTEM

- Negative Aeration Only
- Eighteen 1500 CFM Aeration Stations
- 5,000 cfh/dry ton capacity
- Continuous Aeration with Temperature Feedback and VFD Fan Control

Why Continuous Aeration?

Active Compost Pile – Oxygen Depletion and Regeneration

Pile Oxygen vs. Sulfur and VFA Odors

CH2MHILL

IN-FLOOR AERATION SYSTEM

- Below Ground HDPE Piping to Fans
- HDPE Risers with Flush Mounted Grates
- Engineered Spacing Aeration Grate System
- 1872 Aeration Grates

BIOFILTRATION SYSTEM

Biofilter Fans

Humidification

a from first a

МСС

Odor Collection and Distribution Ductwork

Biofilter 60 Seconds Nominal Detention Time

BIOFILTRATION SYSTEM

COMPOSTING FACILITY EXPANSION BIOFILTER ODOR SAMPLING RESULTS

4/26/2010	Dilution to Threshold (D/T)			
	Detection		Recognition	
Biofilter Inlet	3400		2000	
Biofilter Outlet	370	190	210	110
Odor Removal %	89	94	90	95

High Loading Rate Low Loading Rate

COMPOSTING FACILITY EXPANSION ODOR MODELING RESULTS

- Modeling Confirmed Testing Results/Predictions
- Because No Offsite Impact, Enclosure is not needed
- Air Handling and Biofilter Size is Less than 60% of that Required for a Totally Enclosed Facility
- Realized Savings of \$3M in Capital Due To
 - Smaller Biofilter
 - Smaller Blowers and Ducting
 - Lower Building Cost due to savings in
 - Building Walls
 - Building Insulation
 - Corrosion Coatings
 - Sprinkler System
- Realized 30% Reduction in Electricity Costs in O&M
- AND....Less Offsite Odor Impact Than If Enclosed
 - Due to Limits of Biofilter Emission Concentration
 - Smaller Footprint, Lower Biofilter Mass Emission Rate

PROCESS CONTROL

• 3 Wireless Temperature Probes/Pile Feed Back to SCADA System to Control Blower and Generate Operating Records

Supervisory Control And Data Acquisition

1	InTouch - WindowViewer - C:\LIVINGSTONSCADA_LT1			
<u>F</u> ile	Logic Special			Development <u>!</u>
	4/29/2010	COMPOST PILE 101	NEXT PILE	11:02:25 AM
_				

CURRENT PHASE SELECTED

PILE START - PHASE-1 IS SELECTED

SEQUENCE IS RUNNING

PHASE - STEP DESCRIPTION

Waiting for Pile Temperature (lowest of all three probes) to rise above 113 deg-F

COMPOST PILE 101 - PROCESS STATUS FOR OPERATOR INFORMATION :			
PILE START DATE AND TIME	04-27-2010 10:26:26		
VAR START DATE AND TIME			
PFRP START DATE AND TIME			
DAY COUNT FROM PILE START	2 Days	48 hrs	
DAY COUNT FOR TEMPS >113 -F	0 Days	0 hrs	
DAY COUNT FOR TEMPS >130 -F	0 Days	0 hrs	
DAILY AVERAGE OF PROBE 101A		46.4 deg-F	
DAILY AVERAGE OF PROBE 101B		46.4 deg-F	
DAILY AVERAGE OF PROBE 101C		51.8 deg-F	
DAILY AVERAGE PROBES 101A, B AND C		48.2 deg-F	

COMPOST FAN 101 - SPEED SETPOINT FOR MANUAL CONTROL

50.0 %

BIOFILTER 2

GIZIVITILL

SPOTSYLVANIA COUNTY COMPOST MARKETING

- Done Using In-House Staff
- Quality Product USCC STA Approved
- Registered as Fertilizer with Virginia Dept. of Agriculture
- Compost Produced is Widely Accepted
- Principal Users Are Landscapers, Soil Blenders, and General Public
- Principal Use is in Landscaping

SPOTSYLVANIA COUNTY HISTORICAL COMPOST SALES

Nursery Landscaping Residential

SPOTSYLVANIA COMPOSTING FACILITY CAPITAL COSTS

Buildings/Facility/Engineering (2008)	\$15,500,000
Moving Stock (2007)	\$500,000
Original Facility Buildings/Improvements (2002-2006)	\$1,000,000
Total	\$17,000,000

CH2MHILL

SPOTSYLVANIA COMPOSTING FACILITY 2010 O&M COSTS FIRST 6 MONTHS OPERATION

Labor	\$134,700
Utilities (Electric)	\$27,200
Fuel	\$23,300
Maintenance	\$9,000
Miscellaneous	\$25,800
Subtotal	\$220,000
Biosolids Tonnage Processed	5840
Cost Per Ton Biosolids Processed	\$37.70/ton
Compost Revenues	\$66,200
Cost Per Ton Biosolids Processed After Product Sales	\$26.30/ton

SPOTSYLVANIA COMPOSTING PRELIMINARY ECONOMICS at CAPACITY

Capital Cost	\$17,000,000
Annual Depreciation	\$1,106,000
Projected Annual O&M	\$1,033,700
Subtotal	\$2,139,700
Projected Annual Compost Revenues	\$253,600
Total Annual Cost	\$1,886,100
Projected Annual Tonnage Processed	29,250
Cost Per Wet Ton Processed	
Annualized Capital	\$37.81
O&M	\$26.67
Total Cost per Ton Biosolids	\$64.48

Amortized at 4.5% Original Facilities - 20 year life; New Facilities - 30 year life Moving Stock - 8 year life

48

SPOTSYLVANIA COUNTY COMPOSTING FACILITY EXPANSION CONCLUSIONS

- Total Enclosure is Not Needed for ASP Odor Control
- Emissions Modeling Used to Verify Expected Odor Impacts
- This Proactive Design Approach Saved Capital Costs, Reduced O&M Costs, Saved Space and More Effectively Achieves Odor Impact Goals Than a Totally Enclosed Operation
- Process Controls Design And Operation Details are Key to Providing a Successful Operation without Odor Problems
- Compost Product is Excellent and Material is Sold Out
- Economics are very favorable to alternatives

USCC 19th Annual Conference

Spotsylvania County's Expanded Biosolids Composting Facility Uses Advances in Aerated Static Pile Technology

QUESTIONS?

Todd O. Williams, P.E., BCEE

todd.williams@ch2m.com

