

DEVELOPING AN ORGANICS TO ENERGY PROGRAM: PARALLEL TRACK APPROACH TO MAXIMIZE THE BENEFITS

Presenter: Zeynep K. Erdal, PhD, PE

> January 25, 2011 Santa Clara, CA

<u>Co-authors:</u> Peter Klein (SPPA) Doug Lubben John Borghesi Marty Reif

Presentation Outline

- Introduction
- Project Boundaries
- Business Approach
- Status and Next Steps
- Q&A

Saint Paul Port Authority and Sustainability

- State of Minnesota RPS of 25% by 2025
- Willingness to invest in sustainable energy sources
- Plans and support to develop a Central Corridor Energy District
- Supporting the viability and needs of Central Corridor businesses

Midway Organic Power Project

- Rock-Tenn Minnesota's largest paper recycler
- Power needed for the Rock-Tenn facility equivalent to heating 22,000 homes
- Energy efficiency measures and renewable energy to improve current energy balance

Rock-Tenn Site

Rock-Tenn Site

Midway Organic Power Project

Midway Organic Power Project Definition Elements

- Feedstock availability and characterization
- Technology screening given the feedstock characteristics
- Bounds of project definition for this 70,000 ton SSOM per year facility
- Feedstock handling methods
- Bioenergy production and engine sizing
- Products management options

Crank up an Old Technology Anaerobic Digestion

Midway Feedstock and Products

Greenwaste	MSW	OFMSW	SSO	Liquid Food Waste/ FOG	Sw Sludge/ Manure	
Receiving/ Weighing	Receiving/ Weighing	Receiving/ Weighing	Receiving/ Weighing	Receiving/ Weighing	Receiving/ Weighing	
Size Adjust/ Chopping						
	Glass/ Inerts Separation	Glass/ Inerts Separation	Inerts Separation			
Pulping/ Preparation	Pulping/ Hydrocyclone	Pulping/ Hydrocyclone	Pulping/ Preparation			
			Anaerobic Digestion			
			Digestate Handling			
Compost Fertilizer Soil Electricity Biomethane						

Anticipated Feed Characteristics

	Estimated Design	
Item	Value	Range
Total solids content of SSO including inorganic matter	35%	25 to 50%
Volatile solids as a percent of total solids	70%	55 to 90%
SSOM as received pH	5.5	4.5-7
Residential contribution as a percent of total SSOM	10%	0 to 20%
Commercial contribution as a percent of total SSOM	90%	80 to 100%
Food waste contribution as a percent of residential and commercial SSOM	55%	
Paper waste contribution as a percent of residential and commercial SSOM	35%	
Inorganic matter as % of residential and commercial SSOM	15%	

Low Solids AD Technologies

High Solids AD Technologies

High Solids AD Technologies

Technology Screening Key Issues

- Experience with Municipal Waste and SSOM
- Biogas Yields
- Operating History at Multiple Facilities
- Operations Risks and Feedback
- Odor Management
- Waste Streams
- Flexibility in Project Delivery
- Other Considerations
 - Life Cycle Costs
 - Reference Facilities

Technology Ranking Based on Selected Criteria and Scoring – Shortlisting

Project Definition Phase II

RFP Process

- Identify a single, best value AD system supply for the Project
- Complement the Project permitting/ modeling/ environmental assessment worksheet schedule
- Complement the Project financing schedule
- Complement the integration plan for the development and implementation of all Project elements

RFP Process

- Shortlisted four
- Developed and sent Request for Proposals
- Received two
- Reviewed and selected one

- Technology selected
- Continuing efforts to secure the 70,000 tpy feedstock
- Federal tax credit extension and low interest financing
- Communications with the elected officials

DEVELOPING AN ORGANICS TO ENERGY PROGRAM: PARALLEL TRACK APPROACH TO MAXIMIZE THE BENEFITS

Zeynep.Erdal@ch2m.com

