

Conducting a
Hazard Evaluation
of an On-Farm
Anaerobic
Digester and
Related Systems

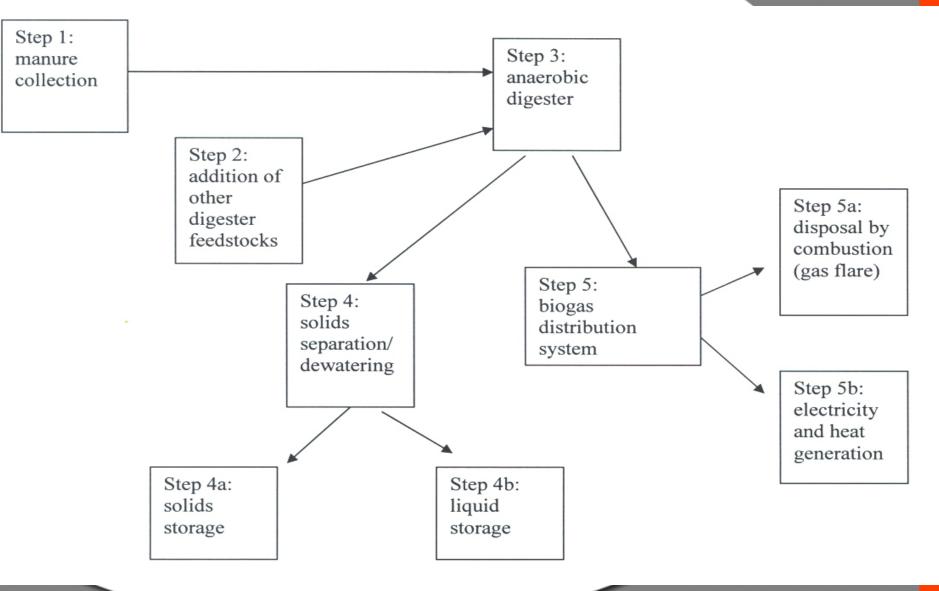
Nellie J. Brown, M.S., C.I.H. Director – Workplace Health and Safety Program

Hazard Evaluation from combination of

Process Hazard Analysis

and

Job Hazard Analysis



Hazard and Operability Analysis (HAZOP)

A process failure analysis technique which examines each step or unit operation to explore all of the possible ways that failures can occur.

Unit Operations

HAZARD AND OPERABILITY STUDY (HAZOP)

GUIDE WORDS	DEVIATION	POSSIBLE CAUSES	CONSEQUENCES	ACTION
NO or NOT				
MORE				
LESS				
AS WELL AS				
PART OF				
REVERSE				
OTHER THAN				

When Performing HAZOP...

Consider as potential causes:

- Human error
- Design problems
- Fire
- Natural disasters such as
 - Earthquake
 - **—**Flood
 - -Wind, tornado, hurricane
 - —Ice
- Power failure
- Sabotage
- Vandalism

When Performing HAZOP...

Consider as potential consequences:

- Human injury or illness
- Injury or illness to animals
- Environmental contamination
- Damage to property
- Fire or explosion
- Contaminated product(s)
- Loss of product(s)
- Monetary losses
- Loss of time

Conducting a job hazard analysis

Steps	Hazard(s)	Evaluation	Preventive Measure(s)
1.			
2.			
3.			
4.			
5.			
Etc.			

JOB HAZARD ANALYSIS

Consider:

Regular procedures for both operations and maintenance
Off-specification procedures

Unusual or infrequently done procedures

Consider any and all types of hazards and combinations

 chemical: adverse health effects; reactivity, fire, explosion

• biological: disease, allergy, inflammation, infection

 ergonomic: strains, sprains, over-exertions (acute or cumulative)

Consider any and all types of hazards and combinations

 occupational stress: including shiftwork and scheduling

• physical: radiation, thermal, EMF, vibration, noise

 trauma: slips, falls, impact, compression, cuts, amputation

Consider any and all types of hazards and combinations

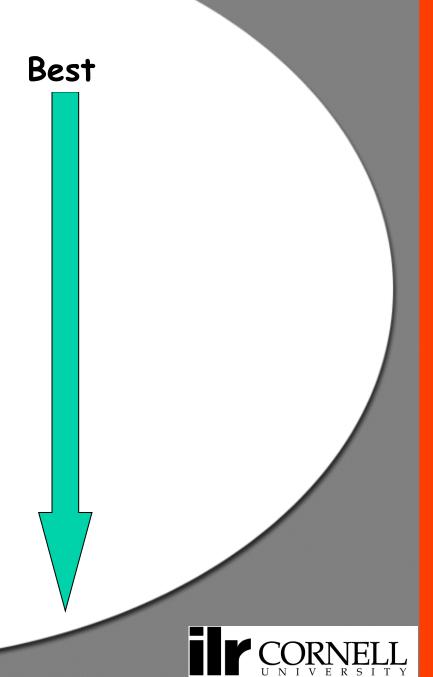
•violence: verbal harassment, threats, physical assaults, property damage

•indoor air quality: non-industrial workplaces

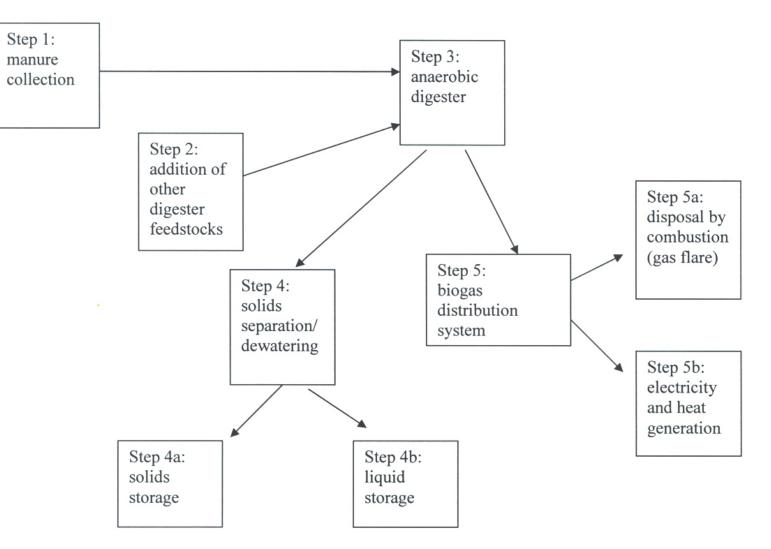
Fatalities in Livestock Manure Storage and Handling Facilities

Principal findings for 1975 - 2004:

- 77 fatalities and 21 severe injuries
- >50% involved dairy operations
- 34% of deaths during repair or maintenance on manure handling equipment
- 22% of deaths were performing rescue of another person



Newly-constructed biogas plant in southwestern Germany Explosion, Dec. 2007



Hierarchy of Controls

- Source Reduction
 - Hazard substitution
 - Process change
- Engineering Controls
 - Enclose process
 - Mechanize process
 - Barriers / isolate hazard
 - Local exhaust ventilation
 - General dilution ventilation
- Administrative Controls
 - Housekeeping
 - Work practices
 - Sampling, testing, monitoring
 - Preventive maintenance
 - Training
- PPE (respirators, clothing, gloves)

Self-Assessment Tool – some results

Manure generators

Alley scraper and the second of the second o

Figure 2

Drive motor without guard - operations

Drive motor - Maintenance

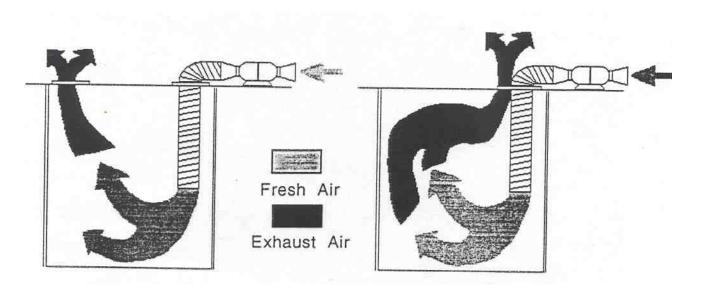
- Lockout/de-energize electrical service
- Remove guard
- Block/chock take-up spindle

Manure pit

- Confined space
- Pump and/or agitator maintenance
- Removal of foreign object from barn
- If agitator turns on during entry, air stripping of hydrogen sulfide could be IDLH

Solutions:

- Lockout/de-energize equipment
- Extract equipment for maintenance
- If entry necessary, have procedure with air testing, ventilation, & rescue



RECOMMENDATIONS BY USDHHS/ CDC/NIOSH: Manure pits on farms should be treated like any other type of confined space.

- all manure pits should be ventilated,
- the atmosphere within the pit should be tested before entry,
- a standby person should be in constant contact and ready to lift the worker to safety with mechanical lifting equipment (winch, hoist, or pulley), and
- anyone entering a manure pit should wear a safety belt or harness with a lifeline tied to the mechanical lifting device.

Ventilation of Confined Spaces

Ventilate the manure pit as per ANSI/ASABE S607

Source

NYS. 1994. Confined space: awareness and safety. NYS Department of State. Office of Fire Prevention and Control

Tank covers

HAZARDS:

 Wooden hatch covers can weaken; even be unable to support people or equipment.

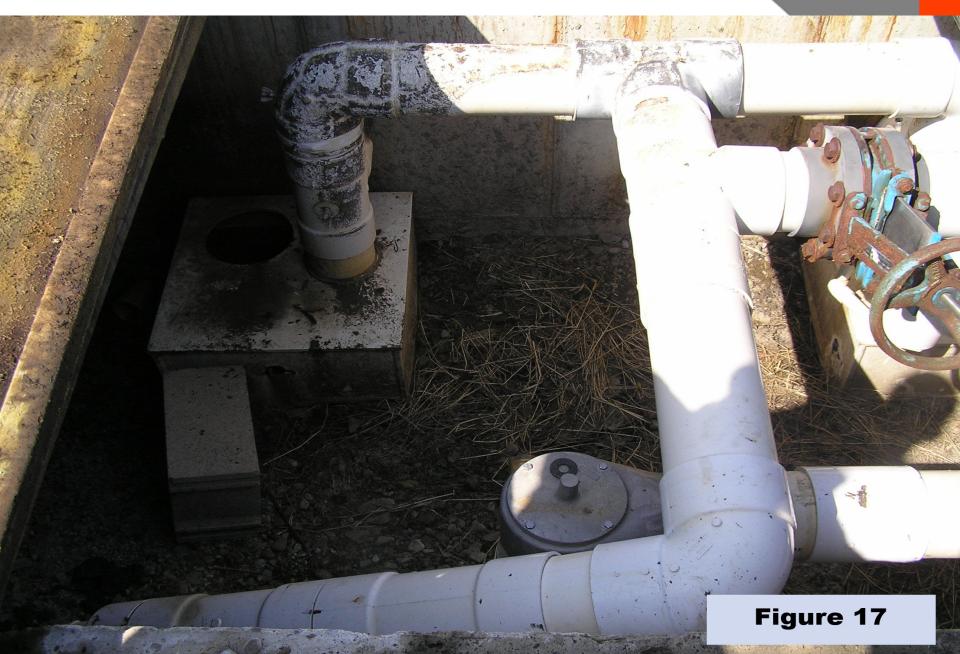
EVALUATION:

 Fall into tank with possible trauma. Engulfment (drowning) is a serious, potentially lifethreatening risk.

PREVENTIVE MEASURES:

 Select materials or grides which can support weight and resist corrosion.

Digester


ANAEROBIC DIGESTER

MAINTENANCE TASKS

- Repair of agitators in digester.
- Cleaning of digester tank, probably after many years of operation.
- Patching of cover; from accidental damage, sabotage, or vandalism.
- Remove foreign objects which entered the system from the barn.

Biogas piping (notice scorching)

Biogas system

HAZARDS:

- Pit is confined space
- Reverse biogas flow from flare

CONTROLS:

- Fill in pit/elevate piping
- Flame arrestor or flash arrestor

Flare

Dewatering of digester solids Thermal burns from hot screw press. Fall to lower level through hole in floor.

Biogas supplied to generator

Biogas Piping

- Operations
 - —Labeling of piping contents; direction of flow
 - Grounding and bonding for static electricity generated by non-conductive gas flowing through piping
 - —Explosion-proof ventilation
- Maintenance
 - Lockout/line-breaking; isolation using valves or blanks
 - Ventilation during power failure
 - Non-sparking tools

Generator

Noise; electrical hazards; oil on floor.

From the on-farm safety analysis ...

...derived a Self-Assessment Protocol for use by farm owner/operators

Available at:

http://digitalcommons.ilr.cornell.edu/manuals/13

On-farm digester manuals for design, start-up, and operations (with safety/health) published June 2012. Available at:

http://www.manuremanagement.cornell.edu/Pages/

Funded%20Projects/

AD Workforce Development Project.html

Lessons learned from hazard evaluations of 8 digesters in NYS...

If designing a digester,

- consider maintenance tasks (not just operations tasks) and their hazards
- plan ways to avoid confined space entry
- flash arrestor

Lessons learned from hazard evaluations of 8 digesters in NYS...

If working with an existing digester:

- Develop a sensible and thorough confined space entry procedure
- Install a flash arrestor for accidental reverse gas flow
- Use strong & durable materials for tank covers and hatches
- Use good signage for confined space, flammability, and drowning hazards
- Provide adequate training for staff on the hazards and work procedures, etc.
 intended to reduce risks

Acknowledgements

NYSERDA funding

Colleagues:

- N. R. Scott, Ph. D. (Cornell University, Ithaca, NY)
- C. A. Gooch, PE, and J. Pronto (PRO-DAIRY Program, Cornell University, Ithaca, NY)
- B. S. Aldrich, CPAg/CCA (formerly with Cornell Cooperative Extension of Cayuga County, Auburn, NY)
- J. Carrabba, MS (The New York Center for Agricultural Medicine & Health, Cooperstown, NY)

